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Abstract
The free energy and Green function of the multi-coupled spin chain in low-
energy theory are given by using the functional bosonization method. We
deduce that 2m coupled spinless chains (m = 0, 1, 2, . . .), by using a series
of unitary transformations, can be reduced to some uncoupled chains, but for
other numbers of coupled spinless chains we need to solve a series of inverse
matrices generally; for either case, the system can be formally separated into
the charge and spin parts.

PACS numbers: 02.30.Gp, 05.30.Jp, 71.27.+a, 75.10,-b

1. Introduction

Among a few non-perturbation theories dealing with the one-dimensional Fermi system,
bosonization is one of the successful methods [1, 2]. Traditional bosonization is the operator
method which directly represents the fermion field in terms of the density operator [3, 4]
in the low-energy scales. The Luttinger liquid and Tomonaga–Luttinger liquid model are
two typical solvable ones. Due to the strong correlated effect, their characteristics cannot
be interpreted with Landau Fermi liquid theory [5–8]. Functional bosonization is another
effective non-perturbation method, of which the idea is based on functional integration. In the
traditional bosonization method, Klein factors must be introduced in order to manifest the Fermi
anticommutations. Although these factors do not influence the Green function for the single
chain, we must be careful in the multi-chain system. The merit of the functional bosonization
is refraining from the introduction of these factors. This method has been applied to the one-
dimensional Tomonaga–Luttinger model with forward scattering [9]. In an electron–phonon
coupling one-dimensional system, the functional-integral approach is extensively adopted to
reveal Peierls dimerization [10–12].
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The one-dimensional chain and spin ladder models are successful for bosonization
[13, 14]. Recently the low-energy theory in multiwall carbon nanotubes was analysed by
the bosonization method and characteristic Luttinger liquid power laws were given [15] by
considering intershell electron tunnelling and the long-ranged Coulomb effect. The multi-
coupled chain is therefore important in nature. Our motivation is to study the multi-coupled
spin chain system. Based on the functional bosonization, the free energy and Green function
are given. We deduce from the conclusion of the coupled spin chain system that 2m coupled
spinless chains with forward scattering can be decoupled to a series of spinless independent
Tomonaga models, but other numbers of coupled chains do not have this characteristic and we
need to solve the eigenvalues for a large matrix.

The paper is arranged as follows. In section 2, we use functional bosonization on the
multi-coupled spin chain system to give the expression for the fermion system with the boson
operators. The free energy and Green function are given in sections 3 and 4 respectively. In
sections 5 and 6, the two-coupled spin chain system, as a example, is thoroughly solved; we
deduce that 2m coupled spinless chains may be decoupled to some independent spinless chain
by a series of unitary transformations.

2. Functional bosonization for the multi-coupled spin system

The construction of the low-energy theory is based on the expansion of the electron operator
for spin σ =↑,↓ on shell n = 1, 2, . . . , N . The electron field may be expressed as the slow-
variation part of ψR near the right-hand Fermi and ψL near the left-hand Fermi point. In the
low-energy scale, the Hamiltonian describing this system is given as

H = −ivF

∫
dx
∑
n,σ

[ψ+
Rnσ (x)∂xψRnσ (x)− ψ+

Lnσ (x)∂xψLnσ (x)]

+
∫

dx dy ρT(x)V (x − y)ρ(y) (1)

with the vector of the fluctuation density

ρT(x) = (ρR1↑(x), ρR1↓(x), . . . , ρRN↑(x), ρRN↓(x), ρL1↑(x), ρL1↓(x),
. . . , ρLN↑(x), ρLN↓(x))

and ρR/Liσ (x) = ψ+
R/Liσ (x)ψR/Liσ (x) the fluctuation density. We have chosen h̄ = 1 and

neglected the back-scattering and the umklapp processes, since these processes need large
enough momentum (∼2pf and ∼4pf ). The interaction potential is chosen as the local
interaction V (x − y) = V δ(x − y), where the 4N × 4N matrix V is written as

V =




V11RRp V11RRv · · · V1NRRp V1NRRv V11RLp V11RLv · · · V1NRLp V1NRLv
V11RRv V11RRp · · · V1NRRv V1NRRp V11RLv V11RLp · · · V1NRLv V1NRLp
V21RRp V21RRv · · · V2NRRp V2NRRv V21RLp V21RLv · · · V2NRLp V2NRLv
V21RRv V21RRp · · · V2NRRv V2NRRp V21RLv V21RLp · · · V2NRLv V2NRLp

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
VN1RRp VN1RRv · · · VNNRRp VNNRRv VN1RLp VN1RLv · · · VNNRLp VNNRLv
VN1RRv VN1RRp · · · VNNRRv VNNRRp VN1RLv VN1RLp · · · VNNRLv VNNRLp
V11RLp V11RLv · · · V1NRLp V1NRLv V11LLp V11LLv · · · V1NLLp V1NLLv
V11RLv V11RLp · · · V1NRLv V1NRLp V11LLv V11LLp · · · V1NLLv V1NLLp
V21RLp V21RLv · · · V2NRLp V2NRLv V21LLp V21LLv · · · V2NLLp V2NLLv
V21RLv V21RLp · · · V2NRLv V2NRLp V21LLv V21LLp · · · V2NLLv V2NLLp

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
VN1RLp VN1RLv · · · VNNRLp VNNRLv VN1LLp VN1LLv · · · VNNLLp VNNLLv
VN1RLv VN1RLp · · · VNNRLv VNNRLp VN1LLv VN1LLp · · · VNNLLv VNNLLp



. (2)

Due to the absence of the magnetic interaction, we have used the indices p and v to represent
the parallel and vertical spin of two electrons respectively, i.e. (↑↑,↓↓) and (↑↓,↓↑). The
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physical character demands that the matrix V is a symmetric one, which has properties

VijRRp = V TjiRRp VijRRv = V TjiRRv

VijRLp = V TjiRLp = VijLRp VijRLv = V TjiRLv = VijLRv.

The regularized partition function of the system is given by the formal ratio:

Z

Z0
=
∫

[D�̄][D�] exp(iS[�̄,�, V ])∫
[D�̄][D�] exp(iS[�̄,�, 0])

(3)

where [D�̄] = ∏N
i=1,σ dψ̄Riσ dψ̄Liσ and [D�] = ∏N

i=1,σ dψRiσ dψLiσ are the integration
measure for the anticommuting fermion field. S[�̄,�, V ] is the action for the system and so
is S[�̄,�, 0] in the absence of the Coulomb interaction V . The action of the multi-coupled
spin system is given by

S[�̄,�, V ] =
∫

dt dx
∑
nσ

[ψ̄Rnσ (x, t)DRψRnσ (x, t) + ψ̄Lnσ (x, t)DLψLnσ (x, t)]

−
∫

dt dx ρT(x, t)V ρ(x, t) (4)

where DR = i(∂t + vF∂x) and DL = i(∂t − vF∂x). Due to the four-fermion interaction in
the system, the partition function becomes after introducing 4N Hubbard–Stratonorich boson
fields φR/Lnσ (x, t),

Z

Z0
=
∫

[D�̄][D�][Dρ][Dφ] exp(iS[�̄,�, φ, ρ, V ])∫
[D�̄][D�][Dρ]D[φ] exp(iS[�̄,�, φ, ρ, 0])

(5)

where [Dφ] = ∏N
i=1,σ dφRiσ dφLiσ and [Dρ] = ∏N

i=1,σ dρRiσ dρLiσ . The action in
equation (5) should be

S[�̄,�, φ, ρ, V ] =
∫

dt dx
∑
nσ

[ψ̄Rnσ (x, t)(DR − φRnσ )ψRnσ (x, t)

+ψ̄Lnσ (x, t)(DL − φLnσ )ψLnσ (x, t)]

+
∫

dt dx φT(x, t)ρ(x, t)−
∫

dt dx ρT(x, t)V ρ(x, t). (6)

Corresponding to the vector ρT, we have denoted the vector φT(x, t) as

φT(x, t) = (φR1↑(x, t), φR1↓(x, t), φR2↑(x, t), φR2↓(x, t), . . . , φRN↑(x, t), φRN↓(x, t),
φL1↑(x, t), φL1↓(x, t), . . . , φLN↑(x, t), φLN↓(x, t)).

It is seen that the introduction of the auxillary fields φR/Liσ makes the density ρR/Liσ

become a series of free fields. Due to the introduction of 4N Hubbard–Stratonorich boson
fields φR/Lnσ (x, t), we can integrate out electron fields from equation (5). After this, the
partition function becomes

Z

Z0
=
∫

[Dρ][Dφ] exp(iSeff(φ, ρ, V ])∫
[Dρ][Dφ] exp(iSeff [φ, ρ, 0])

(7)

where the effective action is

Seff [φ, ρ, V ] = −iTr ln M̂ +
∫

dt dx φT(x, t)ρ(x, t)−
∫

dt dx ρT(x, t)V ρ(x, t). (8)

The matrix M̂ is denoted as

M̂ = M̂0 + !̂ (9)
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with

M̂0 =
(
DR 0
0 DL

)⊗(
I2N×2N 0

0 I2N×2N

)

I2N×2N is the 2N × 2N unit matrix. The 4N × 4N order matrix !̂ is a diagonal one, in which
the diagonal elements are in proper order

φR1↑(x, t), φR1↓(x, t), φR2↑(x, t), φR2↓(x, t), . . . , φRN↑(x, t), φRN↓(x, t),
φL1↑(x, t), φL1↓(x, t), . . . , φLN↑(x, t), φLN↓(x, t)

respectively. Using the formula detA = exp(Tr lnA) and ln(A + B) = lnA + B
∫ 1

0 dλ (A +
λB)−1, we have

Tr ln M̂ = Tr ln M̂0 +
∫ 1

0
dλ
∫

dt dx Tr!(x, t)G̃(x, t, x
′, t ′, [λφ]) |t ′→t x ′→x (10)

where the Green function in equation (10) satisfies the following equation:

M̂(x, t)G̃(x, t, x ′, t ′, [φ]) = δ(x − x ′)δ(t − t ′). (11)

Since the matrix M̂ is diagonal, so is the Green function matrix G̃(x, t, x ′, t ′, [φ]). The matrix
elements of the Green function satisfy

(DR − φRiσ (x, t))G̃Riσ (x, t, x
′, t ′, [φ]) = δ(x − x ′)δ(t − t ′)

(DL − φLiσ (x, t))G̃Liσ (x, t, x
′, t ′, [φ]) = δ(x − x ′)δ(t − t ′). (12)

In order to solve equation (12) we make an ansatz

G̃R/Liσ (x, t, x
′, t ′, [φ]) = G̃0

R/Liσ (x, t, x
′, t ′) exp[QR/Liσ (x, t)−QR/Liσ (x

′, t ′)] (13)

where we have introduced 4N functions QR/Liσ (x, t). Green functions G̃0
R/Liσ (x, t, x

′, t ′)
satisfy

DR/LG̃
0
R/Liσ (x, t, x

′, t ′) = δ(x − x ′)δ(t − t ′). (14)

It is seen that the Green functions G̃0
R/Liσ (x, t, x

′, t ′) do not depend on the index (i, σ ) because

there is no magnetic interaction in the free system, so we denote them as G̃0
R/L(x, t, x

′, t ′) in
the following. The solution for equation (14) is

G̃0
R/L(x, t, x

′, t ′) = ∓exp(±ipF(x − x ′))
2π

1

(x − x ′)∓ vF(t − t ′) . (15)

After substituting equation (13) into (12), we have that 4N × 4N functions satisfy

i(∂t ± vF∂x)QR/Liσ (x, t) = φR/Liσ (x, t). (16)

In the momentum space, the solutions for the above equation are

QR/Liσ (x, t) = 1

T L

∑
q,ω

1

ω ∓ vFq
φR/Liσ (q, ω) exp[i(qx − ωt)]. (17)

Equation (15) shows that there is a divergence point in Green function G̃0
R/L(x, t). Since

G̃0
R/L(x, t) and G̃R/L(x, t, x

′, t ′, [φ]) differing only in phase, this divergence also exists in
GR/L(x, t, x

′, t ′, [φ]). We adopt the point splitting method [16] to regularize for the functional
Green function,

G̃R/L(x, t, x
′, t ′, [φ]) |x ′→x,t ′→t
= 1

2 lim
η→0+

[G̃R/L(x, t, x + η, t, [φ]) + G̃R/L(x, t, x − η, t, [φ])]. (18)
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Substituting equations (13) and (17) into (18), we have the concrete form of the Green functions,

G̃R/Liσ (x, t, x
′, t ′, [φ])|x ′→x,t ′→t = ∓ iλ

2πT L

∑
q,ω

q

ω ∓ vFq
φR/Liσ (q, ω) exp[i(qx − ωt)].

(19)

Therefore the effective action (8) can be written as

Seff [φ, ρ, V ] = − 1

4πT L

∑
q,ω

∑
i,σ

[
q

vFq − ωφRiσ (−q,−ω)φRiσ (q, ω)

+
q

vFq + ω
φLiσ (−q,−ω)φLiσ (q, ω)

]

− 1

T L

∑
q,ω

φT(−q,−ω)ρ(q, ω)− 1

T L

∑
q,ω

ρT(−q,−ω)V ρ(q, ω). (20)

Equation (20) shows that the system described by the fermion field has been turned into
the representation in terms of the density bosonic field and the auxillary bosonic fields.

3. Free energy for the multi-coupling spin chain

It is seen that the effective action is the quadratic function for the boson fields ρ and φ. We
can integrate either of them. In order to give the free energy of the system, we integrate out
the boson fields φ first. After this we have

Seff [ρ, V ] = 1

T L

∑
q,ω

∑
i,σ

[FRρRiσ (−q,−ω)ρRiσ (q, ω) + FLρLiσ (−q,−ω)ρLiσ (q, ω)]

− 1

T L

∑
q,ω

ρT(−q,−ω)V ρ(q, ω) (21)

with FR/L = π(vFq ∓ω)/q. Considering the properties of the interacting matrix V , we make
a unitary transformation

ρ ′(x) = Uρ(x) (22)

where the new vector is described as

ρ ′T(x) = (ρ1R(x), ρ1L(x), . . . , ρNR(x), ρNL(x), χ1R(x), χ1L(x), . . . , χNR(x), χNL(x))

and the transformation is chosen as

2i − 1 2i 2N + 2i − 1 2N + 2i column
...

...
...

...

U = 1√
2




1 1
1 1

1 −1
1 −1




· · · 2i − 1 array
· · · 2i array
· · · 2N + 2i − 1 array
· · · 2N + 2i array

(23)

where i = 1, 2, . . . , N . In the transformation matrix (23), we only write the non-zero matrix
elements and give their sites. Observing equations (22) and (23), ρiR/L and χiR/L represent
the density of charge and of spin in the ith chain respectively. It is proved that the potential
becomes a diagonal matrix after the transformation
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K ′
U ≡ UV UT =

(
S+ 0
0 S−

)
(24)

where the 2N × 2N matrix S is defined as

S± =




S±
11RR S±

11RL S±
12RR S±

12RL · · · · · · S±
1NRR S±

1NRL

S±
11RL S±

11RR S±
12RL S±

12RR · · · · · · S±
1NRL S±

1NRR

S±
21RR S±

21RL S±
22RR S±

22RL · · · · · · S±
2NRR S±

2NRLp

S±
21RL S±

21RR S±
22RL S±

22RR · · · · · · S±
2NRL S±

2NRR

· · · · · · · · · · · · · · · · · · · · · · · ·
S±
N1RR S±

N1RL S±
N2RL S±

N2RR · · · · · · S±
NNRR S±

NNRL

S±
N1RL S±

N1RR S±
N2RR S±

N2RL · · · · · · S±
NNRL S±

NNRR




(25)

with

S±
ijRR = VijRRp ± VijRRv S±

ijRL = VijRLp ± VijRLv.

So the effective action (21) is given by

Seff [ρ, V ] = Sρ + Sχ

Sρ = − 1

T L

∑
q,ω

ξT(−q,−ω)I+ξ(q, ω)

Sχ = − 1

T L

∑
q,ω

ζ T(−q,−ω)I−ζ(q, ω)

(26)

with I± = S± − J . As the expression ofM0, J is a 2N × 2N matrix

J =
(
FR 0
0 FL

)⊗(
IN 0
0 IN

)

and the vectors in equation (26) are the charge part and the spin part denoted as

ξT = (ρ1R, ρ1L, ρ2R, ρ2L, . . . , ρNR, ρNL)

ζ T = (χ1R, χ1L, χ2R, χ2L, . . . , χNR, χNL).

Obviously the charge and spin have been separated from each other. The system is divided
into charge channels and spin channels. In general, spin channels contribute less to the physical
properties than charge channels. So in [15], the contribution of the spin channels are cut down,
but in our case we still maintain this part. The spectrum of the plasmon is determined by
det I(±) |ω=E= 0, which, generally, give N positive roots for the charge part and the spin part
respectively. We denote these roots as Eρi (q) and Eχi (q), (i = 1, 2, . . . , N), so the partition
function (5) becomes

Z

Z0
=
∫

[Dρ] exp[−i
∫
ξT(−q,−ω)I(+)ξ(q, ω)]∫

[Dρ] exp[−i
∫
ξT(−q,−ω)Jξ(q, ω)]

×
∫

[Dχ ] exp[−i
∫
ζ T(−q,−ω)I(−)ζ(q, ω)]∫

[Dχ ] exp[−i
∫
ζ T(−q,−ω)Jζ(q, ω)]

=
∏
q,ω

[
det J(q, ω)

det I(+)(q, ω)

]1/2 ∏
q,ω

[
det J(q, ω)

det I(−)(q, ω)

]1/2

= exp[−F(T )/T ] (27)
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where the free energy F(T ) for the multi-coupled spin chain system is

F(T ) = T
∑
q,ω

[
1

2
ln

det I(+)(q, ω)

det J(q, ω)
+

1

2
ln

det I(−)(q, ω)
det J(q, ω)

]

= T
∑
q,ω

[
1

2
ln

∏N
i=1(ω

2 + Eρi
2
)

(ω2 + q2)N
+

1

2
ln

∏N
i=1(ω

2 + Eχi
2
)

(ω2 + q2)N

]

= T
∑
q,ω

[
1

2

N∑
i=1

ln

(
1 +
E
ρ

i (q)
2 − q2

ω2 + q2

)
+

1

2

N∑
i=1

ln

(
1 +
E
χ

i (q)
2 − q2

ω2 + q2

)]
. (28)

The frequency of the boson is ωn = 2nπ/β. We can first calculate the summation for the
frequency, which gives

F(T ) = F0(T ) +
∑
q>0

N∑
i=1

[Eρi (q) + Eχi (q)− 2q]

+2T
∑
q>0

N∑
i=1

[
ln

1 − exp(−Eρi (q)/T )
1 − exp(−q/T ) + ln

1 − exp(−Eχi (q)/T )
1 − exp(−q/T )

]
. (29)

It is readily proved that our result coincides with ones in [9] for one spin chain or one
spinless chain.

4. Green function for the coupled spin chain

The Green function for the system is given by

iGR/Liσ (x, t, x
′, t ′) =

∫
[Dρ]ψ̄R/Liσ (x, t)ψR/Liσ (x

′, t ′) exp(−iSeff [ρ, V ])∫
[Dρ] exp(−iSeff [ρ, V ])

. (30)

Using the usual bosonization method [1, 3], the relations between Fermi fields and the
boson fields are

ψR/Liσ (x, t) =
(

1

2πα

)1/2

exp[−iφR/Liσ (x, t)]. (31)

Substituting equation (31) into (30), we have

iGR/Liσ (x, t, x
′, t ′) =

∫
[Dρ] exp[i(φR/Liσ (x, t)− φR/Liσ (x

′, t ′)− Seff(ρ, V ))]∫
[Dρ] exp(−iSeff [ρ, V ])

(32)

where

φR/Liσ (x, t)− φR/Liσ (x
′, t ′) = 1

T L

∑
q,ω

fR/L(−q,−ω, x, t, x ′, t ′)ρR/Liσ (q, ω)

fR/L(−q,−ω, x, t, x ′, t ′) = ∓2π

q
[exp(i(qx − ωt))− exp(i(qx ′ − ωt ′))].

(33)

By making use of the transformation (22), Green function (32) is separated into two parts,
one for the charge and the other for the spin:

iGR/Liσ (x, t, x
′, t ′) = G(ρσ)R/Li (x, t, x

′, t ′)G(χσ)R/Li (x, t, x
′, t ′) (34)

where

G
(ρσ)

R/Li (x, t, x
′, t ′) =

∫
[Dρ] exp[(−)σ i(φ(ρ)R/Li (x, t)− φ(ρ)R/Li (x

′, t ′))− iSρ]∫
[Dρ] exp(−iSρ)

G
(χσ)

R/Li (x, t, x
′, t ′) =

∫
[Dχ ] exp[(−)σ i(φ(χ)R/Li (x, t)− φ(χ)R/Li (x

′, t ′))− iSχ ]∫
[Dχ ] exp(−iSχ)

.

(35)
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When spin is up (down), the symbol σ is chosen as 1 (−1) and the functions above are

φ
(ρ)

R/Li (x, t)− φ(ρ)R/Liσ (x
′, t ′) = 1√

2T L

∑
q,ω

fR/L(−q,−ω, x, t, x ′, t ′)ρR/Li (q, ω)

φ
(χ)

R/Li (x, t)− φ(χ)R/Li (x
′, t ′) = 1√

2T L

∑
q,ω

fR/L(−q,−ω, x, t, x ′, t ′)χR/Li (q, ω).

(36)

Due to the separation of charge and spin parts, the interaction in every effective action
is expressed as a 2N × 2N matrix form. It has been shown in equation (26) that the 4N -
interaction-field system reduced to two independent 2N -interaction-field systems. In some
respect, our process simplifies the problem. After integrating, equation (35) gives

G
(ρσ)

R/Li (x, t, x
′, t ′) = exp[ 1

2P
(ρ)

R/Li (x, t, x
′, t ′)]

G
(χσ)

R/Li (x, t, x
′, t ′) = exp[ 1

2P
(χ)

R/Li (x, t, x
′, t ′)]

(37)

where (i = 1, 2, . . . , N)

P
(ρ)

Ri (x, t, x
′, t ′) = i

4T L

∑
q,ω

|fR(q, ω, x, t, x
′, t ′)|2I(+)−1

2i−1,2i−1(q, ω)

P
(ρ)

Li (x, t, x
′, t ′) = i

4T L

∑
q,ω

|fL(q, ω, x, t, x
′, t ′)|2I(+)−1

2i,2i (q, ω)

P
(χ)

Ri (x, t, x
′, t ′) = i

4T L

∑
q,ω

|fR(q, ω, x, t, x
′, t ′)|2I(−)−1

2N+2i−1,2N+2i−1(q, ω)

P
(χ)

Li (x, t, x
′, t ′) = i

4T L

∑
q,ω

|fL(q, ω, x, t, x
′, t ′)|2I(−)−1

2N+2i,2N+2i (q, ω).

(38)

At last we see that Green function of the system can be written as

iGR/Liσ (x, t, x
′, t ′) = exp[PρR/Li (x, t, x

′, t ′) + PχR/Li (x, t, x
′, t ′)]. (39)

Equation (39) shows that the Green function of the system does not depend on the spin
index, because there is no magnetic interaction and the spin in different directions have the
same role in the system. The calculation of Green functions contributes to the calculation
of elements of the inverse matrix (I(±))

−1
. According to the definition of the matrix I(±), its

inverse matrix has the same symmetry property as the matrix S±. If a single spin chain is
considered, our result in equation (39) coincides with [9]. Although it is difficult to give the
elements of the inverse matrix for a multi-coupled chain, theoretically, we can use this formula
to give Green functions. It must be noted that due to the symmetry of matrix S± we can use
another unitary transformation as in equation (23) to transform the vector ρ, χ and the matrix
S±, and further and further, until the matrix I± becomes a 2 × 2 matrix, if the number of
coupled chains is N = 2m. This process makes the system reduce to a series of decoupled
single spinless chains at last. Since the Green function for a single spinless chain is known,
the Green function for the multi-coupled spin chain can be solved by this process. However,
if the number of coupled chains does not satisfy N = 2m, the system is not decoupled to the
single spinless chain and we need to solve the eigenvalues of a matrix at last. In section 6, we
adopt this method to give the Green function for the two-coupled spin chain.
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5. Free energy for the two-coupled spin chain

In order to see the applicability, we apply this method to the two-coupled spin chain. To see
it clearly, the interaction potential in this model is given again:

V2 =




V11RRp V11RRv V12RRp V12RRv V11RLp V11RLv V12RLp V12RLv

V11RRv V11RRp V12RRv V12RRp V11RLv V11RLp V12RLv V12RLp

V21RRp V21RRv V22RRp V22RRv V21RLp V21RLv V22RLp V22RLv

V21RRv V21RRp V22RRv V22RRp V21RLv V21RLp V22RLv V22RLp

V11RLp V11RLv V12RLp V12RLv V11LLp V11LLv V12LLp V12LLv

V11RLv V11RLp V12RLv V12RLp V11LLv V11LLp V12LLv V12LLp

V21RLp V21RLv V22RLp V22RLv V21LLp V21LLv V22LLp V22LLv

V21RLv V21RLp V22RLv V22RLp V21LLv V21LLp V22LLv V22LLp



.

(40)

After integrating out the electron field, the action becomes

Seff [φ, ρ, V ] = − 1

4πT L

∑
q,ω

∑
(i=1,2)(σ=↑↓)

[
q

vFq − ω |φiRσ |2 +
q

vFq + ω
|φiLσ |2

]

+!T ρ + ρTV ρ. (41)

Integrating out the boson field φ, we have the effective action for the density fields

Seff [ρ, V ] = 1

T L

∑
q,ω

∑
(i=1,2)(σ=↑↓)

[FR|ρiRσ |2 + FL|ρiLσ |2] − ρTV ρ (42)

where parameters FR/L are the same as in equation (21). For the purpose of giving the free
energy for the two-coupled spin chain, we select a unitary transformation U in equation (22)

U = 1√
2




1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1
1 −1 0 0 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 0 0 1 −1



. (43)

After this transformation, the interaction potential becomes

K ′
U =

(
S(+) 0

0 S(−)

)
(44)

where S(±) is a 4 × 4 matrix.

S(±) =



V11RRp ± V11RRv V11RLp ± V11RLv V12RRp ± V12RRv V12RLp ± V12RLv

V11RLp ± V11RLv V11LLp ± V11LLv V12RLp ± V12RLv V12LLp ± V12LLv

V21RRp ± V21RRv V21RLp ± V21RLv V22RRp ± V22RRv V22RLp ± V22RLv

V21RLp ± V21RLv V21LLp ± V21LLv V22RLp ± V22RLv V22LLp ± V22LLv


 .

(45)

According to the physical characters, these matrix elements for the same coupled spin chain
should satisfy

V11RRp = V22RRp = V11LLp = V22LLp
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and

V11RRv = V22RRv = V11LLv = V22LLv

V12RRp = V21RRp = V12LLp = V21LLp

V12RRv = V21RRv = V12LLv = V21LLv

V12RLp = V21RLp V12RLv = V21LLv

V11RLp = V22RLp V11RLv = V22RLv.

So there are eight different matrix elements in the interaction potential. Under this
transformation, the charge and spin field has the following relations with the original boson
fields ρiR/Lσ :

(ρ1R, ρ1L, ρ2R, ρ2L, χ1R, χ1L, χ2R, χ2L)
T

= U(ρ1R↑, ρ1R↓, ρ2R↑, ρ2R↓ρ1L↑, ρ1L↓ρ2L↑, ρ2L↓)T. (46)

The effective action for the two-coupled spin chain becomes the new form in which the
charge and spin fields are separated

Seff [ρ, V ] = Sρ + Sχ (47)

where the charge part is

Sρ = 1

T L

∑
q,ω

∑
i

[FR|ρiR(q, ω)|2 + FL|ρiL(q, ω)|2] − 1

T L

∑
q,ω

ρT(−q,−ω)S+ρ(q, ω) (48)

and the spin part is

Sχ = 1

T L

∑
q,ω

∑
i

[FR|χiR(q, ω)|2 + FL|χiL(q, ω)|2] − 1

T L

∑
q,ω

χT(−q,−ω)S−χ(q, ω)

(49)

with ρT = (ρ1R, ρ1L, ρ2R, ρ2L) and χT = (χ1R, χ1L, χ2R, χ2L). The parameters FR/L are the
same as in equation (21). If the magnetic effect is not considered, it is reasonable for us to
assume that the two matrices S± have the following forms, which correspond to equation (45)
for every element:

S(±) =



a± a± b± b±

a± a± b± b±

b± b± a± a±

b± b± a± a±


 . (50)

So the plasmon spectra are calculated from

det


S± −



FR 0 0 0
0 FL 0 0
0 0 FR 0
0 0 0 FL





∣∣∣∣∣∣∣
ω=E

= 0.

After calculation, the spectra of the system are

E±
1 (q) = |q|

[
v2

F +
2a±vF

π
+

2

π2

√
b±2(πvF + a±)2 − a±b±2(2πvF + a±)

]1/2

(51)

and

E±
2 (q) = |q|

[
v2

F +
2a±vF

π
− 2

π2

√
b±2(πvF + a±)2 − a±b±2(2πvF + a±)

]1/2

. (52)
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Lending to equation (29), the free energy for the two-coupled spin chain is

F(T ) = F0(T ) +
∑
q>0

2∑
i=1

[E+
i (q) + E−

i (q)− 2q]

+2T
∑
q>0

2∑
i=1

[
ln

1 − exp(−E+
i (q)/T )

1 − exp(−q/T ) + ln
1 − exp(−E−

i (q)/T )

1 − exp(−q/T )
]
. (53)

6. Green function for two-coupled spin chain

In section 4, we showed our idea to solve the Green function for the multi-coupled spin
chain. Now a concrete example for the two-coupled chain is given. In section 5, by a
unitary transformation (43), the action for the two-coupled spin chain has been turned into
the form (47). It is seen that the charge and spin have been separated and expressed as
charge vector ρ and spin vector χ . In the meantime, the Green function has been written as
equation (34), but the matrices I± in it are 4 × 4 ones. It is important for us to notice that I±

still has the same symmetry as S±, so we can perform a further transformation to reduce the
action. Lending to the unitary transformation (43), the next transformation for the effective
action (48), (49) is

U ′ = 1√
2




1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


 (54)

which transforms the two vectors ρ and χ into

(ρ
(+)
R , ρ

(+)
L , ρ

(−)
R , ρ

(−)
L )T = U ′(ρ1R, ρ1L, ρ2R, ρ2L)

T (55)

(χ
(+)
R , χ

(+)
L , χ

(−)
R , χ

(−)
L )T = U ′(χ1R, χ1L, χ2R, χ2L)

T (56)

and the matrix S± becomes a diagonal matrix form

D(±) ≡ U ′S±U ′T =
(

A
(±)
1 0
0 A

(±)
2

)
(57)

where

A
(±)
1 =

(
v
(±)
1 v

(±)
2

v
(±)
2 v

(±)
1

)

A
(±)
2 =

(
δ
(±)
1 δ

(±)
2

δ
(±)
2 δ

(±)
1

)
v
(±)
1 =

∑
i,j

[VijRRp ± VijRRv]

v
(±)
2 =

∑
i,j

[VijRLp ± VijRLv]

δ
(±)
1 =

∑
i,j

[ViiRRp ± ViiRRv] −
∑
i �=j

[VijRRp ± VijRRv]

δ
(±)
2 =

∑
i

[ViiRLp ± ViiRLv] −
∑
i �=j

[VijRLp ± VijRLv].

(58)

After the unitary transformation, the effective action (47) becomes the sum of four
independent actions

Seff [ρ, V ] = S[ρ(+)] + S[ρ(−)] + S[χ(+)] + S[χ(−)] (59)
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where

S[ρ(+)] = 1

T L

∑
q,ω

∑
i

[FR|ρ(+)R (q, ω)|2 + FL|ρ(+)L (q, ω)|2]

− 1

T L

∑
q,ω

(ρ
(+)
R (−q,−ω), ρ(+)L (−q,−ω))A(+)1

(
ρ
(+)
R (q, ω)

ρ
(+)
L (q, ω)

)
(60)

S[ρ(−)] = 1

T L

∑
q,ω

∑
i

[FR|ρ(−)R (q, ω)|2 + FL|ρ(−)L (q, ω)|2]

− 1

T L

∑
q,ω

(ρ
(−)
R (−q,−ω), ρ(−)L (−q,−ω))A(+)2

(
ρ
(−)
R (q, ω)

ρ
(−)
L (q, ω)

)
(61)

S[χ(+)] = 1

T L

∑
q,ω

∑
i

[FR|χ(+)R (q, ω)|2 + FL|χ(+)L (q, ω)|2]

− 1

T L

∑
q,ω

(χ
(+)
R (−q,−ω), χ(+)L (−q,−ω))A(−)1

(
χ
(+)
R (q, ω)

χ
(+)
L (q, ω)

)
(62)

S[χ(−)] = 1

T L

∑
q,ω

∑
i

[FR|χ(−)R (q, ω)|2 + FL|χ(−)L (q, ω)|2]

− 1

T L

∑
q,ω

(χ
(−)
R (−q,−ω), χ(−)L (−q,−ω))A(+)2

(
χ
(−)
R (q, ω)

χ
(−)
L (q, ω)

)
. (63)

It is seen that these actions (60)–(63) describe the single spinless chains, but they
correspond to different physical quantities. S[ρ(+)] corresponds to the total charge moving
at the right-hand Fermi point; S[ρ(−)] corresponds to the total charge moving at the left-hand
Fermi point, while S[χ(+)] corresponds to the total spin moving at the right-hand Fermi point
and S[χ(−)] corresponds to the total spin moving at the left-hand Fermi point. All of these are

spinless Tomonaga–Luttinger liquid models. Similarly to the result in [9], functions Pρ
(+)

R/L in
equation (37) for the action S[ρ(+)] can be calculated

P
ρ(+)

R/L(x, t, x
′, t ′) = − ln

x ∓ v̄F[ρ(+)]t + iα

x ∓ vF + iα

−µ[ρ(+)] ln[(x − v̄F[ρ(+)]t + iα)(x + v̄F[ρ(+)]t − iα)] (64)

where for simplicity we have used x and t to replace x − x ′ and t − t ′ in the right-hand side
of equation (64). Parameters in equation (64) are defined as

µ[ρ(+)] = 1

4

(
g[ρ(+)] +

1

g[ρ(+)]
− 2

)
1

β[ρ(+)]
= 1

2

(
g[ρ(+)] +

1

g[ρ(+)]

)

β2[ρ(+)] = 1 −
[

v
(+)
2

π(vF + v(+)1 )

]2

v̄F[ρ(+)] = β(vF + v(+)1 ).

(65)

Other functions Pρ
(−)

R/L , P
χ(+)

R/L and Pχ
(−)

R/L in equation (37) are obtained from Pρ
(+)

R/L by replacing

(v
(+)
1 , v

(+)
2 ) by (v(−)1 , v

(−)
2 ), (δ

(+)
1 , δ

(+)
2 ) and (δ(−)1 , δ

(−)
2 ) in equations (64) and (65) respectively.

So the Green functions of the system are

iGR/Liσ (x, t, x
′, t ′) = exp

[
1
2 (P

ρ(+)

R/L + Pρ
(−)

R/L + Pχ
(+)

R/L + Pχ
(−)

R/L )
]
. (66)
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Combining equations (64)–(66), the Green function for the two-coupled spin chain is
expressed as

iGR/Liσ (x, t, x
′, t ′) = 1

2π exp(ipf x)W

W = θ(t)
∏

κ=ρ(+),ρ(−)χ(+),χ(−)

1

(x ∓ v̄F[κ]t + iα)1/2
1

[(x − v̄F[κ]t + iα)(x + v̄F[κ]t − iα)]µ[κ]/2

+θ(−t){cc}. (67)

From this result, we see that the Green function for the two-coupled spin chain is the
multiplying form of Green functions in terms of many single spinless non-coupling chains
with different parameters, but these parameters are determined by the coupling system.
Furthermore, for the 2m coupled spinless chains, we may use a series of transformations
to reduce it to many non-coupled chains and give properties of the system. However, for other
numbers of coupled spinless chains, the problem is not so simple, and we have to solve a series
of matrices.

7. Conclusion

Only considering the forward scattering, the free energy and the Green function of the multi-
coupled spin chain system are derived by using the functional-integral method in the low-energy
scales. We deduce that as the treatment for the spin-coupled chains 2m coupled spinless chains
can be reduced into many independent single spinless Tomonaga–Luttinger liquid models, so
the Green function and free energy can be obtained easily, while many other properties of the
system can be found, but for other numbers of coupled spinless chains, since we cannot reduce
them into the form of a single spinless case at last, we have to solve the elements of an inverse
matrix such as I±.
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