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Abstract

The free energy and Green function of the multi-coupled spin chain in low-
energy theory are given by using the functional bosonization method. We
deduce that 2™ coupled spinless chains (m = 0, 1,2, ...), by using a series
of unitary transformations, can be reduced to some uncoupled chains, but for
other numbers of coupled spinless chains we need to solve a series of inverse
matrices generally; for either case, the system can be formally separated into
the charge and spin parts.

PACS numbers: 02.30.Gp, 05.30.Jp, 71.27.+a, 75.10,-b

1. Introduction

Among a few non-perturbation theories dealing with the one-dimensional Fermi system,
bosonization is one of the successful methods [1,2]. Traditional bosonization is the operator
method which directly represents the fermion field in terms of the density operator [3, 4]
in the low-energy scales. The Luttinger liquid and Tomonaga—Luttinger liquid model are
two typical solvable ones. Due to the strong correlated effect, their characteristics cannot
be interpreted with Landau Fermi liquid theory [5-8]. Functional bosonization is another
effective non-perturbation method, of which the idea is based on functional integration. In the
traditional bosonization method, Klein factors must be introduced in order to manifest the Fermi
anticommutations. Although these factors do not influence the Green function for the single
chain, we must be careful in the multi-chain system. The merit of the functional bosonization
is refraining from the introduction of these factors. This method has been applied to the one-
dimensional Tomonaga—Luttinger model with forward scattering [9]. In an electron—phonon
coupling one-dimensional system, the functional-integral approach is extensively adopted to
reveal Peierls dimerization [10-12].
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The one-dimensional chain and spin ladder models are successful for bosonization
[13, 14]. Recently the low-energy theory in multiwall carbon nanotubes was analysed by
the bosonization method and characteristic Luttinger liquid power laws were given [15] by
considering intershell electron tunnelling and the long-ranged Coulomb effect. The multi-
coupled chain is therefore important in nature. Our motivation is to study the multi-coupled
spin chain system. Based on the functional bosonization, the free energy and Green function
are given. We deduce from the conclusion of the coupled spin chain system that 2 coupled
spinless chains with forward scattering can be decoupled to a series of spinless independent
Tomonaga models, but other numbers of coupled chains do not have this characteristic and we
need to solve the eigenvalues for a large matrix.

The paper is arranged as follows. In section 2, we use functional bosonization on the
multi-coupled spin chain system to give the expression for the fermion system with the boson
operators. The free energy and Green function are given in sections 3 and 4 respectively. In
sections 5 and 6, the two-coupled spin chain system, as a example, is thoroughly solved; we
deduce that 2" coupled spinless chains may be decoupled to some independent spinless chain
by a series of unitary transformations.

2. Functional bosonization for the multi-coupled spin system

The construction of the low-energy theory is based on the expansion of the electron operator
for spino =1, | onshelln = 1,2,..., N. The electron field may be expressed as the slow-
variation part of Yr near the right-hand Fermi and /. near the left-hand Fermi point. In the
low-energy scale, the Hamiltonian describing this system is given as

H = —iv f A > (W0 (0B Yao (1) = Uiy ()3 Y ()]

+/dx dy pT )V (x = )p(y) M
with the vector of the fluctuation density

P (x) = (or11(x), PR1Y(X), -+ oy PRVE (X)), PR (X, PLIE(X), PLIL (X)),

< PLNY(X), pLiy (X))
and pr/Lic (x) = Vg ILio (X)¥Rr/Lic (x) the fluctuation density. We have chosen 7 = 1 and
neglected the back-scattering and the umklapp processes, since these processes need large

enough momentum (~2p; and ~4pr). The interaction potential is chosen as the local
interaction V(x — y) = V§(x — y), where the 4N x 4N matrix V' is written as

Vilrep Viirry -+ Vinrgp  Vivrry  ViRLp  ViRy  cc+ Vinr  VinRLy
Vilre  Viirgp -+ Vinrry  Vinrrp  Viiry ViR -+ Vinrwy  Vinrop
Voirrp  Vairry -0 Vownrrp  Vowrry  Vairp  Vairy o0 Vanrey Vawnrey
Vairry - Vairrp v+ Vonvrry  Vanrrp  Vairey Vairy o0 Vanre  Vonrip
VNirrp  VNIRRv  *© VNnrRrp VNNRRy  VNIRLp  VNIRLy -+ Viarlp  VNRLy
V = VNirRry  VNIRRp - VNNRRv  VNNRRp VNiRLy  VNirLy -+ Vwarly  VuarLp )
Virey  Viirwy -+ Vinr Viveey Vi Vinw oo Vi Viniwe :
Viree Ve oo+ Vivrey Vivrey Viwy Vi o0 Vivew Vivw
Vary  Vairwy o0 Vonry Vonvrey Voo Vo oo Vani Vewninw
Vairey - Varip o0+ Vonrey Vaverep Vo Vo oo Vavw Vawniip
Viir,p  VnirLy -0 Vanryy  Vawrey Vi Vavie oo+ Vvain Vaaiwy
VnirLy  Vairyp -+ Vnnrwy  Vanryy Vi Vi oo Vaviny Vo

Due to the absence of the magnetic interaction, we have used the indices p and v to represent
the parallel and vertical spin of two electrons respectively, i.e. (11, }{) and (1], | 1). The
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physical character demands that the matrix V' is a symmetric one, which has properties
Vijrrp = V;RRp Vijrry = V;RRV
ViirLp = V]‘Y;RLp = VijLrp VijrLy = V_,ERLV = VijLRv-
The regularized partition function of the system is given by the formal ratio:
Z  [IDY][DW¥]exp(iS[¥, ¥, V])
Zo  [[DWI[DW]exp(iS[¥, ¥,0])
where [DV] = l_[fvzl,(, dyris d¥Lie and [DW] = ]_[fv:m dris diL, are the integration
measure for the anticommuting fermion field. S [W, W, V] is the action for the system and so

is S[¥, W, 0] in the absence of the Coulomb interaction V. The action of the multi-coupled
spin system is given by

3

S|, ¥, V] = f drdx ) [Yrao (X, ) DrYRno (%, 1) + Yino (6, 1) DLY Lo (x, 1)]

—/dtdx pT(x,HVp(x,1) “4)

where Dgr = i(9; + vgd,) and Dy, = i(9, — vgdy). Due to the four-fermion interaction in
the system, the partition function becomes after introducing 4 N Hubbard—Stratonorich boson
fields ¢r/Lno (x, 1),

Z _ [IDVI[DVYI][Dp][D$lexp(S[¥, ¥, ¢, p, V])

= = _ _ 5
Zy  [[DVIID¥][Dp]D[¢lexp(S[¥, ¥, ¢, p, O]) ©

where [D¢] = H,N:I,a dpRris ddpri; and [Dp] = ]_[fV:,YG dpric dpLic. The action in
equation (5) should be

U8 0. 9. p. V1= [ Aty Y lias (6,1 (D = s Yo .)

'HﬁLna(xa t)(DL - ¢Lno)wLna ()C, t)]
+/dt dx ¢T(x, Hp(x,t) — / dr dx pT(x, HVp(x,t). (6)

Corresponding to the vector pT, we have denoted the vector ¢ (x, ) as

T (x, 1) = (Prir (x, 1), Pr1y (X, 1), ProY (X, 1), BR2Y (X, 1), - -y PR (X, 1), BRAVY (X, 1),
dLip(x, 1), drLiy (e, 1), ..., Pyt (x, 1), pLny (x, 1)).
It is seen that the introduction of the auxillary fields ¢r,1ic makes the density pgr/Lio
become a series of free fields. Due to the introduction of 4 N Hubbard—Stratonorich boson

fields ¢r,Lao (X, ), we can integrate out electron fields from equation (5). After this, the
partition function becomes

Z _ [IDplID$]exp(iSet (4, p, V1)

Z_ : (7)
Zy  [[Dpl[D$]exp(iSes[e, o, 0])

where the effective action is

Settldp, p, V] = —iT, In M +/dt dx ¢ (x, )p(x, 1) — /dt dx pT(x, )V p(x, 1). (8)

The matrix M is denoted as

M = My +® 9)
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with
~ (Dr O Dyyon 0
MO_( 0 DL)®< 0 12N><2N>
Iy oy isthe 2N x 2N unit matrix. The 4N x 4N order matrix disa diagonal one, in which
the diagonal elements are in proper order
Pr11(x, 1), Pr1y (X, 1), PRy (X, 1), PRy (X, 1), ..., PRV (X, 1), rivy (X, 1),
GLir(x, 1), Py (x, 1), ..., Py (x, 1), PLny (x, 1)

respectively. Using the formula det A = exp(7,In A) and In(A + B) =InA + B fol dir (A +
AB)~!, we have

1
T,InM =T, lnM0+/ d)»/dtdx T.0(x, )G (x, 1, X, 1, [AP]) lrms vox (10)
0

where the Green function in equation (10) satisfies the following equation:
M. DG, t.x' 1, [¢]) = 8(x —x)8(t —1'). Y

Since the matrix M is diagonal, so is the Green function matrix é(x, t,x',t', [¢]). The matrix
elements of the Green function satisfy

(Dr — $rio (x, ))Grio (X, 1,x', 7', [p]) = 8(x — x)8(t — 1)
(DL = ¢ric (x, 1)GLio (x, 1, X", 1, [¢]) = 8(x — x")8(t — 1').
In order to solve equation (12) we make an ansatz

GryLio (x, 1, X', 1, [¢]) = G%/Lm(x, t,x', 1) exp[ Or/Lio (X, 1) — OryLio (X', 1)] (13)

where we have introduced 4N functions Qgriis(x,?). Green functions GOR JLic (Xs 1, x', 1)
satisfy

(12)

DGy (v 1,2 1) = 8(x — x)8(t — 1) (14)

It is seen that the Green functions GOR ILic (x,t,x’,1") donot depend on the index (i, o) because
there is no magnetic interaction in the free system, so we denote them as GOR L (x,t,x',t") in
the following. The solution for equation (14) is

exp(Eipr(x — x) 1

G, (x,t,x', 1) = )
R/L(x XL =F 21 (x —x") Fup(t —t)

15)

After substituting equation (13) into (12), we have that 4N x 4N functions satisfy
1(0; & vr0yx) Or/Lio (X, 1) = PRr/Lic (X, 1). (16)
In the momentum space, the solutions for the above equation are

Orjtio (1) = == 3 —— 110 (g, @) expliCgx — )] (17)
R/Lio (X, =TI q,ww:FUqu)R/Lm q,w)expli(gx — wt)].

Equation (15) shows that there is a divergence point in Green function GOR jL(x, ). Since

Gg /L(x, t) and GR/L(x, t,x',t', [¢]) differing only in phase, this divergence also exists in
GryL(x,1,x', 1, [¢]). We adopt the point splitting method [16] to regularize for the functional
Green function,

GroL (6, 1,31 [B)) Lo
=3 im [Gra (e, t.x + 1,1, (@D + Gri(x, 1, x =0, 1, [$D]. (18)
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Substituting equations (13) and (17) into (18), we have the concrete form of the Green functions,

~ Y 1A q .
GryLio (6, 1, X1 (@D sy = F > $r/Lio (@, @) expli(gx — wn)].

2rTL = ©F Veq
(19)
Therefore the effective action (8) can be written as
eff[¢ ,0, - 4 TL le |: ¢Rm( q, _w)¢R10(q w)
+ ¢Li6(_qv _w)¢LiU(qv w)}
Vpq + @
77 29" (—a. —w)p(q. ®) — o Zp (—q. )V p(q, o). (20)
q,0 q,0

Equation (20) shows that the system described by the fermion field has been turned into
the representation in terms of the density bosonic field and the auxillary bosonic fields.

3. Free energy for the multi-coupling spin chain

It is seen that the effective action is the quadratic function for the boson fields p and ¢. We
can integrate either of them. In order to give the free energy of the system, we integrate out
the boson fields ¢ first. After this we have

1
Serrlp, V1= 7 3 ) IFrrio (=4, —0)PRio (4, @) + FLpLio (¢, —0)pLio (4, )]

q,0 i,0

=7 2P (4. o)V (g, 0) @1)
q,w

with Fr1. = m(vrg F w)/q. Considering the properties of the interacting matrix V', we make
a unitary transformation

p'(x) = Up(x) (22)
where the new vector is described as
P (x) = (pir(x), PIL(X), ..., pNR(X), PNL(X), XIR(X), XIL(X), -+, XNR(X), XNL(X))

and the transformation is chosen as

2i — 1 20 2N +2i —1 2N +2i column
1 1 <.+ 2i — 1 array
U 1 1 1 .-+ 2i array
2|1 -1 --+ 2N +2i — 1 array
1 -1 --- 2N +2i array
(23)
wherei = 1,2, ..., N. In the transformation matrix (23), we only write the non-zero matrix

elements and give their sites. Observing equations (22) and (23), p;r,1. and x;gr/. Tepresent
the density of charge and of spin in the ith chain respectively. It is proved that the potential
becomes a diagonal matrix after the transformation
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St 0
/- T —
KU =UVU ( 0 S‘) (24)
where the 2N x 2N matrix S is defined as
+ + + + + +
SllRR SllRL SlzRR SlZRL oo SINRR SINRL
+ + + + + +
SllRL SllRR SI2RL S12RR SlNRL SlNRR
+ + + + + +
SZIRR S21RL SzzRR SZZRL oo SZNRR SZNRLp
+ _ + + + + + +
5% = S21RL S21RR S22RL SZZRR oo SZNRL SZNRR (25)
+ + + + + +
SNIRR SNIRL SNZRL SN2RR oot SNNRR SNNRL
+ + + + + +
SNIRL SNIRR SNZRR SNZRL Tt SNNRL SNNRR
with
Si:;;RR = ‘/inRp =+ ‘/inRV Si:;?RL = ‘/inLp + ‘/inLV'
So the effective action (21) is given by
Seff[p’ V]= Sp + S)(
1
Sp=—7—) E'(—q.—0)I*&(q, 0)
? TL ; (26)

1 _
Sy =—77 §¢T<—q, —0)I7¢(q, w)

with I* = ST — J. As the expression of My, J is a2N x 2N matrix

(R O Iy 0
=(5 R)e(b 1)
and the vectors in equation (26) are the charge part and the spin part denoted as

ET = (DIR, PILs P2Rs P2L» - - - » PNR> PNL)
¢ = (XIR> XILs X2R» X2L» - - - » XNR»> XNL)-

Obviously the charge and spin have been separated from each other. The system is divided
into charge channels and spin channels. In general, spin channels contribute less to the physical
properties than charge channels. So in [15], the contribution of the spin channels are cut down,
but in our case we still maintain this part. The spectrum of the plasmon is determined by
det I® |,_p= 0, which, generally, give N positive roots for the charge part and the spin part
respectively. We denote these roots as Eip (g) and EZX (@), (i =1,2,..., N), so the partition
function (5) becomes

Z  [[Dplexpl—i [§"(=q, —0)IVE(q, )]

Zy  [[Dplexpl—i [ET(~q. —w)JE(q. »)]
y [[Dxlexpl—i [ ¢T(—q, —0)I7¢(q, w)]
JIDxlexpl—i [ T(—q. —w) T (g, ®)]
3 1-[[ det J(q, w) }“21-[[ det J(q, w) }1/2
v det I (q, ) o det IC)(q, w)

exp[—F(T)/T] (27)
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where the free energy F(T') for the multi-coupled spin chain system is

1 detI® 1. detr™
F(T) :TZ[_IHC—((I’Q))_F_]ne—(q’w)}
v 2 det J(q, w) 2 det J(q, w)

1 N @+ EP? 1 N (w? + EF?
TZ Z1n Hz:l(w + i ) + In Hz:l(w + i )
q,w 2

(@? +q?)N 2 (2 + g2
Ly EL @’ =g\ 1 E @) —
SN ED LY R Uk U IS ety (§ PR ok U | PO 1
;[2,2_;11( w? +q? 2;“ w?+q? (28)

The frequency of the boson is w, = 2nw /. We can first calculate the summation for the
frequency, which gives

N
F(T)=Fy(T)+ Y _ Y [El(q) + El(g) — 2q]
g>0 i=1
N o X
1 - —E; T 1 - —E; T
+2TZZ |:ln exp(=£i(q)/T) | 1—exp(=Ei (g)/ )}.
1 —exp(—¢/T) 1 —exp(—¢/T)
It is readily proved that our result coincides with ones in [9] for one spin chain or one
spinless chain.

(29)
g>0 i=1

4. Green function for the coupled spin chain

The Green function for the system is given by
JIDpIYr Lio (X, )Yr/Lio (X', 1) exp(—iSere[p, V1)
J(Dplexp(—iSet[p, V1) '

Using the usual bosonization method [1, 3], the relations between Fermi fields and the
boson fields are

1 \12
Yr/Lio (X, 1) = <2—) exp[—i¢r/Lio (x, 1)]. 3D
T

Substituting equation (31) into (30), we have
JDplexpli(¢r/Lic (x, 1) — PryLic (X, ') — Serr (0, V)]

iGryLio(x,1,x",1") = (30)

iGrjLio(x, 1, x', 1) = - (32)
b [[Dplexp(—iSeilp. V1)
where
/ / 1 i /
PrR/Lic (X, 1) — PrR/Lic (X', 1) = TL ZfR/L(_q7 —w,Xx,t, X, 1) pr/Lic (¢, ®)
4o (33)

2 . .
fR/L(_qv —w, X, I, -x/s t/) = :':7[exp(l(qx - Ll)t)) - exp(l(qx/ - C()t/))]
By making use of the transformation (22), Green function (32) is separated into two parts,
one for the charge and the other for the spin:
iGrLio (x, £, X', 1) = GETs (x, 1, X', ()G (x, £, %', 1) (34)
where
JIDplexpl(—)7i(@),; (x. 1) — ¢, (x', 1) —i,]
J[Dplexp(—iS,)
JIDx1expl(—)7 i@ (x. 1) — i (¢, 1) — i8]
JIDx]exp(=iS,) '

GYpi(x. 1. x' 1) =
(35

Gl({(/iz (x,t,x',t) =
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When spin is up (down), the symbol o is chosen as 1 (—1) and the functions above are

O (1) = B, (1) = me ¢, —o. 2. 1,3 1) pr/1i (4. ©)
f (36)
B 1) = B 1) = fTL me( 4 =0 %, 1.3 )i (@ ).

Due to the separation of charge and spin parts, the interaction in every effective action
is expressed as a 2N x 2N matrix form. It has been shown in equation (26) that the 4N-
interaction-field system reduced to two independent 2 N-interaction-field systems. In some
respect, our process simplifies the problem. After integrating, equation (35) gives

Gy t.x' 1) = expl} PO} (x. 1, X, 1)] -
G, 1, x' 1) = exply Pl (e, 1,6, 1)]
where i =1,2,..., N)
PP (x,1,x', 1) = mZIfR(q w,x,t,x', t)|2I(+)2l 12i21(q, @)
PP a1 = Zm(q o, x, 1, %', YTV (g, o)
(38)
PP (x 1, x 1) = 4TLZ|fR<q 0, 2, 1,2 ) PT p1 aei1 (@ @)
P]ff)(x,t,x/,t') = 7L ZIfL(q w,x,t,x', )17 ;N+2l nsai (@ @).
At last we see that Green function of the system can be written as
iGRryLio (x, 1, X', 1) = exp[ Pgp; (x, 1, X', 1) + PRy (x, 1, X, 1)]. (39)

Equation (39) shows that the Green function of the system does not depend on the spin
index, because there is no magnetic interaction and the spin in different directions have the
same role in the system. The calculation of Green functions contributes to the calculation
of elements of the inverse matrix (I G According to the definition of the matrix I & its
inverse matrix has the same symmetry property as the matrix S*. If a single spin chain is
considered, our result in equation (39) coincides with [9]. Although it is difficult to give the
elements of the inverse matrix for a multi-coupled chain, theoretically, we can use this formula
to give Green functions. It must be noted that due to the symmetry of matrix S* we can use
another unitary transformation as in equation (23) to transform the vector p, x and the matrix
S*, and further and further, until the matrix I* becomes a 2 x 2 matrix, if the number of
coupled chains is N = 2™. This process makes the system reduce to a series of decoupled
single spinless chains at last. Since the Green function for a single spinless chain is known,
the Green function for the multi-coupled spin chain can be solved by this process. However,
if the number of coupled chains does not satisfy N = 2™, the system is not decoupled to the
single spinless chain and we need to solve the eigenvalues of a matrix at last. In section 6, we
adopt this method to give the Green function for the two-coupled spin chain.
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5. Free energy for the two-coupled spin chain

In order to see the applicability, we apply this method to the two-coupled spin chain. To see

it clearly, the interaction potential in this model is given again:

Viirep  Viirry - Vizrgp  Vizrey  Viiryy  Viirwy Vi Vizroy
Viiree  Viirrp  Vizrrv  Vizrrp  Viirey  Virey  Vizrey  Vicrep
Vairrp  Vairry - Vaorrp  Vaorrv - Vairrp  Vairwy  Vaorep  Vaorew
Vv, = Voirry - V2iRrp  V22rRrv  V22rrp  V2iry Voiry  V2oriv  Vozrip
Virey Virey Vigryy Vi Vi Viiwy Vi Viowwy
Vilrew  Virey  Viorwy  Viry Vi Vi Viowny  Viowwp
Voarey  Vaoirwy Vorpy  Voory Vo Voirw Voo Voorrw
Voarey Vairp  Vaorey Vaory  Vainw Vo Voonw  Vaourp
(40)
After integrating out the electron field, the action becomes
1 q
Serlg 0, VI=—7—=> > [—|¢ma|2+ |¢iw|2}
L o i=1.0G=ty LVFL — @ VFq + @
+0Tp+pTVp. 41)
Integrating out the boson field ¢, we have the effective action for the density fields
1
2 2
Selp, V= =3 >, [Flpinol’ + Filpire 1= p"Vip (42)

g0 (i=1,2)(c=1)

where parameters Fr,; are the same as in equation (21). For the purpose of giving the free
energy for the two-coupled spin chain, we select a unitary transformation U in equation (22)

1 1.0 0 0 0 0 0
00 0 0 1 1 0 0

00 1L 1 0 0 0 0

g Llo 0o 0o 0 0 0 1 1
Ll -1t 0o 0 0 0 0 o
00 0 0 1 -1 0 0

0 0 I -1 0 0 0 0
00 0 0 0 0 1 —1I

After this transformation, the interaction potential becomes

S 0
K{J = ( 0 S())

where S® is a 4 x 4 matrix.

Vi2rrp £ Vi2RRv
VizrLp £ VizrLy
Vaorrp £ Vaorry
Vasrip £ VaorLy

ViirLp £ ViirLy
Viieey £ Viwy
Vairep & Vairey
Voirrp £ Ve

Viirrp = ViiRRv
ViirLp £ ViiRLy
Vairrp £ Vairry
Vairep £ VairLy

§® —

(43)
(44)
Vi2rLp £ Vi2rLy
ViaLey £ VioLLy
Vasrep & Vaorey
Voorrp £ Vaory
(45)

According to the physical characters, these matrix elements for the same coupled spin chain

should satisfy

Viirrp = V22rrp = ViiLLy = VaoLip
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and

ViirRry = Vaorrv = ViiLy = Vaorry
Viorrp = V21rrp = Vi2LLp = VaiLLp
Vizrry = V21rrv = VioLLy = VaiLLy
VisrLy = Vairip VizrLy = VaiLLy
VitrLp = Vazrip ViirLy = VaorLy-

So there are eight different matrix elements in the interaction potential. —Under this
transformation, the charge and spin field has the following relations with the original boson
fields PiR/Lo -

(PIR, PIL, P2Rs P2Ls XIRs XILs X2R, X2L)
= U(PiR1 PIRYs PR} PRRLPILYs PILLOLL P2LL) - (46)

The effective action for the two-coupled spin chain becomes the new form in which the
charge and spin fields are separated

Seiclo, V] =S, + 8y (47)

where the charge part is
1 2 2 1 T +
Sp = TL ;Z[FRMR(C], w)|” + FL|pir(g, ®)|"] — TL ;P (—q, —w)S"p(q, w) (48)
and the spin part is
1 1 _
Sy =77 22 D FRlxir(@ @) + Filxin(q o)) = =3 x"(~4, ~0)8" x(g, )
q,0 i q,0

(49)

with p* = (pir. piL, P2r, po1) and x* = (xir, X1Ls X2r, X20). The parameters Fr are the
same as in equation (21). If the magnetic effect is not considered, it is reasonable for us to
assume that the two matrices ST have the following forms, which correspond to equation (45)
for every element:
a:i: a:t b:t b:t

e
a* a* b* b
bt b* a* a*t |’ (50

bt bt gt ot

§® —

So the plasmon spectra are calculated from

FR 0 0 O
0O F 0 O

:l: p— —
det | S 0 0 F 0 0.
0 0 0 R W—E
After calculation, the spectra of the system are
2a* 2 12
EX(g) = |q| |:v}2; + an”F + F\/bﬂ(mF +at)? — atbE2 Qv + ai)] (51)
and
2a* 2 12
EF(g) =q| [vg il —2\/bi2(nvp +a*)? — athE? Qg + ai)] . (52)
b4
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Lending to equation (29), the free energy for the two-coupled spin chain is

2
F(T) = Fo(T) + ) Y [Ef (9) + E (9) — 2q]

g>0 i=1
2T 1—exp(~E}(q)/T)  1— exp(—E.‘(q)/T):|
2T 1 ! 1 i ] 53
" C,Z;,Z[n 1 —exp(—¢q/T) o 1 —exp(—q/T) (53)

6. Green function for two-coupled spin chain

In section 4, we showed our idea to solve the Green function for the multi-coupled spin
chain. Now a concrete example for the two-coupled chain is given. In section 5, by a
unitary transformation (43), the action for the two-coupled spin chain has been turned into
the form (47). It is seen that the charge and spin have been separated and expressed as
charge vector p and spin vector x. In the meantime, the Green function has been written as
equation (34), but the matrices I in it are 4 x 4 ones. It is important for us to notice that I+
still has the same symmetry as S*, so we can perform a further transformation to reduce the
action. Lending to the unitary transformation (43), the next transformation for the effective
action (48), (49) is

1 0 1 0
, 1o 1 0 1
U=75110 -1 0 o9
o1 0 -1
which transforms the two vectors p and x into
(g o7 g )T = U (pir. piL. par. po)” (55)
O P o T = U Gare s xers x20)T (56)
and the matrix S* becomes a diagonal matrix form
AP0
D® =yu'stuT=("1 57
0 A;i) (57)
where
(€3] [€5)
AD (N
1 v(ﬂ:) v(:b)

t o
AY = (8&) 8%i>>
62 81
v =) [Vijrrp £ Virey]

@ hi (58)
v, = Z[VinLp *+ Vijrv]

ij
87 = [Virrp % Viirry] = Y _[Vijrrp & Vijrry]
ij i#j
5§i) = Z[ViiRLp £ Viiriv] — Z[VinLp £ VijrLv]-
i i#]
After the unitary transformation, the effective action (47) becomes the sum of four
independent actions

Settlp, V1= S[pP1+ S[p 1+ S[x D1+ S[x 1 (59)
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where

S[,O(+)] _ TL ZZ FR|,O(+)(q a))l +FL|,0(+)(q,w)|2]

Z(p“)( g, —o), o (=g, w))A“)( 0@ “’)) (60)
IOL (‘I’ )

S[p 1 = ﬁ Z Y 1Felog (g, o) + Filpl (g, )]

(=)
— + ( 9 )
Z(p - q,—w),pﬁ)(—q,—w))A§)<ZE)(g’z)> (61)
S[x®1 = —ZZ[FRu(”(q o)+ FLlx " (q. o)
(+)
+ + - (g, w)
— D0 0.~ 4" (g, —on Ay (ﬁ) o Z)> (62)
S[x1 ZZ[ Frlxg (@, o) + FLlx( (g, )]
(=)
Z(x (=g, ), 17 (=, w))A“)(X‘f_)(""")). (63)
X (g, )

It is seen that these actions (60)—(63) describe the single spinless chains, but they
correspond to different physical quantities. S[p*] corresponds to the total charge moving
at the right-hand Fermi point; S[0(™] corresponds to the total charge moving at the left-hand
Fermi point, while S[x ] corresponds to the total spin moving at the right-hand Fermi point
and S[x ] corresponds to the total spin moving at the left-hand Fermi point. All of these are
spinless Tomonaga—Luttinger liquid models. Similarly to the result in [9], functions P]f;z in
equation (37) for the action S[p™] can be calculated

x F op[p®]t +ia
In

PLY (e t,x 1) = —
/ X F Up + i
—ulpPIn[(x — e[p™® ]t + i) (x + e[ Pt — iat)] (64)

where for simplicity we have used x and ¢ to replace x — x’ and ¢ — ¢’ in the right-hand side
of equation (64). Parameters in equation (64) are defined as

ulp™ = = (g[p(+)]+ 1 —2) S (g[p(”]+ 1 >
4 [p™] Blo™] glp™]

)
Bl M1=1- [

(65)
)

T(Vg+v

2
(+))] elp™ ] = Bve +v;").

Other functions Plf;:, Pé/(L) and Pl{;]:) in equation (37) are obtained from Plf;z by replacing

@, 08 by 087, 07, (817,857 and (87, 817) in equations (64) and (65) respectively.
So the Green functlons of the system are

. *) (=)
iGryLio (x,1,x',1') = exp [%(PR/L +PY /L + Pl + PE)). (66)
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Combining equations (64)—(66), the Green function for the two-coupled spin chain is
expressed as

iGrLio (x, 1, X', 1) = 5= exp(ipx)W
1 1
W =06(r) 1_[

=y, 5 (x F Uplx ]t +i) /2 [(x — D[kt + i) (x + VR[]t — iar) |HIx1/2

+0(—1){cc}. (67)

From this result, we see that the Green function for the two-coupled spin chain is the
multiplying form of Green functions in terms of many single spinless non-coupling chains
with different parameters, but these parameters are determined by the coupling system.
Furthermore, for the 2™ coupled spinless chains, we may use a series of transformations
to reduce it to many non-coupled chains and give properties of the system. However, for other
numbers of coupled spinless chains, the problem is not so simple, and we have to solve a series
of matrices.

7. Conclusion

Only considering the forward scattering, the free energy and the Green function of the multi-
coupled spin chain system are derived by using the functional-integral method in the low-energy
scales. We deduce that as the treatment for the spin-coupled chains 2" coupled spinless chains
can be reduced into many independent single spinless Tomonaga—Luttinger liquid models, so
the Green function and free energy can be obtained easily, while many other properties of the
system can be found, but for other numbers of coupled spinless chains, since we cannot reduce
them into the form of a single spinless case at last, we have to solve the elements of an inverse
matrix such as /*.
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